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Abstract

Near-infrared spectroscopy (NIRS) is a fast and non-destructive analytical method. Associated with chemometrics, it becomes a powerful tool for
the pharmaceutical industry. Indeed, NIRS is suitable for analysis of solid, liquid and biotechnological pharmaceutical forms. Moreover, NIRS can
be implemented during pharmaceutical development, in production for process monitoring or in quality control laboratories.This review focuses
on chemometric techniques and pharmaceutical NIRS applications. The following topics are covered: qualitative analyses, quantitative methods
and on-line applications. Theoretical and practical aspects are described with pharmaceutical examples of NIRS applications.
© 2007 Elsevier B.V. All rights reserved.
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. Introduction

In the 1800s William Herschel had discovered radiation
eyond the visible red light. However, prior to Second World
ar the near infrared (NIR) region was not considered useful

or spectroscopy [1]. It was observed that near infrared bands
re severely overlapping and difficult to interpret.

Near Infrared Spectroscopy (NIRS) covers the transition from
he visible spectral range to the mid-infrared region. In the area of
IR (800–2500 nm, respectively 12821–4000 cm−1) [2] mainly
ibrations of –CH, –OH, –SH and –NH bonds are observed. All
he absorption bands are the results of overtones or combinations
f the fundamental mid-infrared bands [3]. Many handbooks
nd papers describe the theory of near infrared spectroscopy
2,4].

Nowadays near infrared spectroscopy and chemometrics
ave proven their effectiveness for both qualitative and quan-
itative analyses in as different fields as agriculture [1,5], food
6], chemical [7] and oil industry [8].

NIRS is generally chosen for its speed, its low cost and its
on-destructive characteristic towards the analyzed sample. On
ne hand, the interest in NIR has increased thanks to the instru-
ent improvements and the development of fibre optics that

llow the delocalization of the measurements. On the other hand
t has increased because of the computer progresses and the

evelopment of new mathematical methods allowing data treat-
ent. While mid-IR spectra and especially the absorbance bands

re directly interpretable due to chemical peak specificity, NIR
pectra are difficult to interpret.

N
c

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697

Therefore, the use of chemometrics is required. Chemomet-
ics [9–11] is a discipline using mathematical and statistical
ethods for the selection of the optimal experimental proce-

ure and data treatment of chemical analyses. Chemometrics
egroups several topics such as design of experiments, infor-
ation extraction methods (modelling, classification and test

f assumptions) and techniques allowing understanding the
hemical mechanisms. A review concerning chemometrics has
een written by Lavine [12] and many textbooks are available
13–15].

In this paper, the commonly used chemometric methods for
he analysis of NIR spectra will be described. The three main
echniques groups are the following:

Mathematical pretreatments to enhance the information
that is searched for the study, and decrease the influence
of the side information contained in the spectra. The spec-
tral pre-processing is considered as well known and not
described in this text. The classical pretreatments are normal-
izations, derivatives and smoothing. For more details, readers
are referred to textbooks [15,16].
Classification methods to group samples together according
to their spectra (description in the second part of the paper).
Regression methods to link the spectrum to quantifiable
properties of the samples (description in third part of the

paper).

ear infrared spectroscopy is described in the European Pharma-
opoeia (chapter 2.2.40) and in the US Pharmacopoeia general
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hapter 〈1 1 1 9〉. Moreover guidelines are published by the
uropean Agency for the Evaluation of Medicinal Products

EMEA/CVMP/961/01) and by the Pharmaceutical Analytical
ciences Group (PASG). We also want to mention previous
eviews concerning the near infrared spectroscopy [17–20].

The aim of this article is to carry out a review concerning the
harmaceutical applications of near infrared spectroscopy and
hemometrics. The first part focuses on the methods for quali-
ative analyses and classifications. In the second part regression

ethods and quantitative applications of NIRS will be described.
n the last part examples of on-line applications will be studied.

. Qualitative analyses by near infrared spectroscopy

Qualitative analysis means classification of samples accord-
ng to their NIR spectra. NIR identifications are based on
attern recognition methods. Application of pattern recognition
ethodologies within chemistry [21], biology [22], and food

ciences [23] are important.
The classification techniques can be divided into two cate-

ories: the unsupervised and the supervised ones. Concerning
he unsupervised classification, samples are classified without
prior knowledge, except the spectra. Then the spectroscopist
eeds to explain these clusters. Supervised pattern recognition
re techniques in which a prior knowledge, i.e., the category
embership of samples, is required. Thus, the classification
odel is developed on a training set of samples with known

ategories [15]. Then the model performance is evaluated by
omparing the classification predictions to the true categories of
he validation samples.

The aim of this part is to describe briefly the chemomet-
ic methods for classification and to present an overview of
harmaceutical applications in the field of qualitative analy-
es, especially identification and qualification of raw and final
aterials.

.1. Chemometric methods

.1.1. Unsupervised classification methods
Principal component analysis (PCA) is a feature reduction

ethod which forms the basis for multivariate data treatment.
CA is used to visualize the data. The most important PCA appli-
ation is the reduction of the number of variables (scores) and
he representation of a multivariate data table in a low dimen-
ional space [16,24]. Thus, the new variables (loadings) are
inear combinations of the original ones and can be interpreted
ike spectra.

Samples having different origins were analyzed in an article
rom Roggo et al. [25]. The aim of this study was to pro-
ose solutions to understand the differences between production
ites. PCA was computed, the score plot confirmed statistical
ifferences between the production sites, and the loadings iden-
ified the key-wavelengths and showed that the excipients were

esponsible of the differences.

Concerning the clustering methods, on one hand, hierarchi-
al methods proceed by a successive divisions of the data set
nd result in a cluster sequence which can be represented with

e

2
(

Biomedical Analysis 44 (2007) 683–700 685

tree, i.e., a dendrogramme [26]. On the other hand, there are
on-hierarchical methods like Gaussian mixture models [26],
-means [10,27], density based spatial clustering of applica-

ions with noise (DBSCAN) [28,29] or Kohonen neural network
30]. Applications of unsupervised methods will be described in
ection 2.2. The unsupervised methods, even if used in pharma-
eutical environment, are not the most common ones. It is more
ikely to find supervised methods, which are going to be detailed
n the very next section.

.1.2. Supervised classification methods
There are three major differences between supervised pattern

ecognition algorithms [31]. There is a first distinction between
ethods focusing on discrimination, such as linear discriminant

nalysis (LDA), and those which put the emphasis more on sim-
larity within a class, for example soft independent modelling of
lass analogy (SIMCA). The second difference concerns linear
nd non-linear methods like neural methods. The third distinc-
ion divides the parametric and non-parametric computations. In
he parametric techniques such as LDA, statistical parameters of
he normal distribution of samples are used in the decision rules.

The classical methods for the supervised classification are
orrelation based methods, distance based methods, LDA,
IMCA, and partial least squares discriminant analysis (PLS-
A).

.1.2.1. Correlation and distances based methods. To be able
o cluster objects, their similarity or dissimilarity is measured.
ommon mathematical methods in NIRS are correlation coef-
cient (CC) and distances in order to express similarity [32].
C is defined as the cosine of the angle between the vector for

he sample spectrum and the one for the average spectrum for
ach class of the library. Concerning distances, different types
re computed: for example the Euclidean or the Mahalanobis
nes [15].

In order to have supervised methods, a threshold needs to
e defined. For example, if the correlation coefficient is higher
han a certain threshold, the two compared spectra are consid-
red as belonging to the same class. EMEA guidance encourages
he application of wavelength correlation with a 95% thresh-
ld or the maximum wavelength distance [27]. However, other
echniques are acceptable if justified.

.1.2.2. Discriminant analysis. LDA is a linear and parametric
ethod with discriminating characteristics [33]. LDA focuses

n finding optimal boundaries between classes. LDA like PCA
s a feature reduction method. However, while PCA selects a
irection that retains maximal structure in a lower dimension
mong the data, LDA selects the directions that achieve a maxi-
um separation among the different classes [34]. We can notice

hat LDA uses Euclidean distance to classify unknown samples.
uadratic discriminant analysis (QDA), a non-linear classifica-

ion method [15] must be mentioned as this method proved its

fficiency in solving particular NIR problems.

.1.2.3. K nearest neighbours. K nearest neighbours [35,36]
KNN) is a non-parametric method. An unknown sample of
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he validation set is classified according to the class to which
elongs the majority of its K nearest neighbours in the training
et [37]. The matrix of distances of the validation set samples
o all other spectra of the training set is computed. The neigh-
ours of an unknown sample are the samples having the lowest
uclidean norms. The predicted class is the class featuring the

argest number of objects among the K neighbours.
The accuracy of the LDA, QDA and KNN method has been

valuated on a tablet data set and a capsule data set to clas-
ify samples of clinical studies [38]. In the same manner, Wu et
l. compared several classification methods [39]. The selection
f the most accurate classification method is data set depen-
ent; therefore several chemometric methods have to be tried
ut.

.1.2.4. Modelling methods. SIMCA [40] uses the modelling
roperties of principal component technique (PCA). It is a para-
etric method. This method considers each class separately. For

ach class, a PCA is performed which leads to a principal compo-
ent (PC) model [10]. The validation set is used with every class
odels. An unknown sample is assigned to the class described

y the model that produces the smallest residue during the pre-
iction. SIMCA puts more emphasis on similarity within a class
han on discrimination between classes. For example SIMCA
as been applied to identify NIR spectra of 10 pharmaceutical
xcipients [41]. For each type of excipients at least 15 samples
ere collected in the data base, considering different batches

nd various suppliers.
PLS-DA [42,43] is a parametric and linear method. Partial

east squares (PLS) identifies latent variables in the featured
paces which have maximal covariance within the predictor
ariables.

Some applications of this kind of methods were published:
LS-DA was applied to the supervised classification of samples
ut of dissolution specifications and the identity of blistered
ablets was controlled on transmission spectra [44,45].

.1.2.5. Non-linear methods. Artificial neural networks (ANN)
re non-linear and non-parametric classification methods
46,47]. ANN are composed of several layers of neurons [22]:
nput, hidden and output layers. A neuron is a processing unit
hich transforms by an activation function input into an output
ata [48].

Several types of neural networks can be used for classifica-
ion. Wang et al. [49] describe the advantages of multivariate
iscriminant analysis and feed-forward neural networks as clas-
ifiers. Two other networks are dedicated to the classifications:
earning vector quantization neural network (LVQ) [50,51] and
robabilistic neural network (PNN) [50].

Concerning pharmaceutical applications, networks [52] were
pplied to the identification of powder samples of sulfaguanidine
ased on diffuse reflectance spectra and their first derivative
pectra. The networks were applied to discriminate qualified,

nqualified and counterfeit powders.

Finally, during the last few years, a large number of appli-
ations deal with the support vector machines (SVM). In
harmaceutical application, SVM were applied for drug design
Biomedical Analysis 44 (2007) 683–700

53,54]. However, no pharmaceutical applications of SVM with
IR spectra have been found.

.2. Pharmaceutical applications

.2.1. Identification and qualification

Analysis of starting materials
International Conference on Harmonization (ICH) guide-

lines describe the importance of the identity tests [55–58].
Pharmacopoeias [59] have selected analytical methods to
identify raw materials: for example HPLC, optical rotation,
and colorimetry. The NIR application for qualitative analysis
is also described by the European Pharmacopoeia in Chapter
2.2.40.

The identification of incoming raw materials is now a com-
mon NIRS application [60] thanks to the minimal sample
preparation. A lot of publications describe this kind of appli-
cations because NIR can be applied to control excipients,
active pharmaceutical ingredient (API) and final products.
Ulmschneider et al. applied NIRS to identify different types
of starches, sugars, celluloses, intermediates and active ingre-
dients with principal component analysis and the cluster
calibration module of the Nircal® software (Büchi AG)
[61–64]. NIRS was applied to differentiate between the dif-
ferent Avicel products (microcrystalline celluloses PH-101,
102 and 200) [65]. The discrimination of celluloses [66] is
statistically significant. Cellulose ethers were identified by
NIR spectroscopy, however the separation of methylcellulose
and cellulose ethers with methyl or hydroxyalkyl groups was
not possible. Different types of polyvinylpyrrolidones (povi-
dones) are characterized by their viscosity measured in water.
Kreft et al. [67] have developed a NIRS method using SIMCA
for the determination of the povidone types. The identifica-
tion of raw material can be performed directly at-line at the
reception in the warehouse or in the dispensing.

The NIR spectroscopy in comparison to wet chemical
methods to control the quality of a pharmaceutical intermedi-
ate has been investigated. 7-Aminocephalosporanic acid has
been chosen as an example by Andre [68].

A transflectance NIRS method [69] was developed for
the identification of 15 solvents using a correlation coef-
ficient. The optimum conditions for the clustering were
obtained with the second derivative over the wavelength range
1136–2000 nm.

Strategies for development and optimization of libraries
have been discussed by Gerhausser and Kovar [70]. Spectra of
17 benzodiazepines have been collected over the wavelength
range from 1100 to 2500 nm. Validation of the models by pre-
dicting the identity of test set samples showed that the use of
the correlation coefficient and the second derivative improved
the recognition rate. Two pattern recognition methods, corre-
lation coefficient and distance, were applied to confirm the

identity of 117 drugs by using libraries based on full-range
second derivative spectra. In this study, the construction of
sub-libraries in order to discriminate similar drugs did not
improve the classification.
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After the identification, the qualification of raw materials
needs to be presented. Qualification will determine whether
a sample is within the normal variability range or is subject
to over limit deviations. Distance based methods are often
applied for the qualification of products. If the sample belongs
to the same population as the reference product, then there
is a probability of 99.7% that the distance will be less than
three times the standard deviation. If the maximum distance
is higher than that value, then the sample is from a different
population.
Tablets

A method was developed for the identification of ille-
gal ecstasy tablets [71]. The main identified substances
were N-methyl-3,4-methylendioxyamphetamine, N-ethyl-
3,4-methylendioxyamphetamine and amphetamine. The
discrimination of the substances in tablet matrices was possi-
ble. Near infrared transmission spectroscopy combined with
chemometric methods can also be applied for identity con-
firmation of clinical trial tablets [45]. Tablet identification is
commonly performed by NIRS in quality control laboratories.

.2.2. Polymorphism
The ability of a substance to occur in different crystalline

orms is called polymorphism. The solid-state properties have
n influence on the stability and dissolution properties of the
harmaceutical product. Moreover, fast analytical methods need
o be implemented to help the galenical production. Infrared
nd Raman spectroscopies have been applied successfully to
haracterize API polymorphic forms. Nevertheless NIRS is also
n analytical tool to solve this pharmaceutical issue.

The processing of NIR spectra provides information concern-
ng the crystalline form of miokamycin [72]. NIR could increase
he understanding of physical forms of theophylline [73]. The
haracterization and the analysis of azithromicin, an antibiotic
erived from erythromycin A, was studied by Blanco et al. [74].
n this study, the NIRS method was validated according to the
CH guideline.

The suitability of near infrared spectroscopy to follow
hanges in both the amorphous and crystalline lactose at room
emperature has been investigated [75] and their differentiation
ound possible by studying the NIR frequencies of water peaks.

.2.3. Other applications
After the presentation of the main applications of NIRS, other

tudies can be mentioned as well. Yoon et al. [76] discrimi-
ated the production sites of proprietary tablets. The PCA score
lots showed that spectra of tablets originating from different
anufacturing sites are statistically different. The identifica-

ion of production sites is valuable to manufacturers, customers
nd industry regulations. Scafi and Pasquini [77] used NIRS
o identify counterfeit drugs. The identification is based on the
omparison of the NIR spectrum of a sample with spectra of
he authentic drug using PCA and SIMCA methods. The results

howed that at least 50 spectra must be included in the training
et in order to obtain 100% of good classification. Vredenbregt
t al. used NIRS to determine authenticity and origin of Viagra®

ablets [78]. A new development in pharmaceutical quality con-
Biomedical Analysis 44 (2007) 683–700 687

rol is the use of a combination of analytical methods to make a
ngerprint of a drug substance or mixture [79,80]. The food and
rug administration (FDA) is paying attention to the NIRS as
nalytic tool to fight counterfeiting and to detect non-conformity
ith the original product.
NIRS and chemometrics were also performed to understand

rocess and dissolution issues [81]. More precisely, then it
howed how NIRS and IR imaging can be useful in under-
tanding batch differences due to different process conditions.
eginning with a qualitative analysis of the potential applica-

ions of NIRS and IR imaging to solid forms, the ability of NIRS
o detect the effects of melt granulation time-temperature gra-
ient, compaction force, coating formulation and coating time
ere tested on pilot production samples.
One important operation in manufacturing solid pharma-

euticals is the monitoring of the homogenization process. An
niform distribution of the active ingredient and the excipients
n a pharmaceutical blend is essential to have the correct dosage
82]. Details will be given in the on-line part of this review.
s a new field of application, the NIR qualitative analyses for
iotechnology products is also raising up. For example NIRS
as applied to identify bacteria stains [83,84]. However, most of

he applications of NIRS in biotechnology field are quantitative
nd will be presented in the next paragraphs.

.3. Practical aspects to develop qualitative methods with
IRS

The classification methods and the main qualitative applica-
ions were presented. Thus, the aim of this part is to provide
ractical aspects for developing a NIR qualitative method, opti-
izing calibration, managing and validating a library.

Sampling and data pre-processing
Yoon et al. [85,86] optimize the sample presentation of

pharmaceutical excipients for the NIR measurements. Using a
Foss NIR Systems Rapid Content Analyzer, three parameters
were identified with significant impact on the classification
algorithm: cup diameter, sample thickness, and cup material.

The NIR spectra can be affected by the particle sizes of
the sample, by variations of the optical pathlength and by
crystalline forms. That is why a well defined sample analysis
preparation protocol is required. To avoid or decrease these
interferences mathematical pretreatments are applied on the
spectra.

The most current data pretreatments are the normaliza-
tion methods like standard normal variate [87] (SNV) and
multiplicative scatter correction [88] (MSC), the derivative
methods (for example the Savitzky-Golay method) and the
Orthogonal Signal Correction (OSC).

The spectral pretreatments and the selection of the wave-
length ranges should be carefully chosen before applying the
pattern recognition methods in order to optimize the model. de

Groot et al. [89] and Wu et al. [90] have shown the influence of
wavelength selection and data pre-processing on NIR classi-
fication. The effect of data pre-processing (no pre-processing,
offset correction, de-trending, SNV, SNV+de-trending, MSC,
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first and second derivative) on the identification of 10 phar-
maceutical excipients was also investigated by Candolfi et al.
[91].
Library management (calibration set management)

The identification process involves two steps, viz. record-
ing NIR spectra for the calibration set, a so-called ‘spectral
library’, and then for the validation set. Correct identification
relies on the choice of the calibration set, i.e., spectra to be
included in the library. The spectra should contain every pos-
sible source of variability associated with the product and the
manufacturing process (i.e., different batches and different
storage times). Spectral variability can also be considered by
including spectra of the same sample recorded by different
operators on different days.

It is difficult to determine the number of spectra to be
included in a library. The number of samples will depend on
the study. For a product manufactured in a reproducible way,
variability can be taken into account by samples from 5 to 10
different batches. However, if manufacturing reproducibility
is poor, the number of required spectra to be included can
dramatically increase. The EMEA guideline [27] advises to
use at least five batches: three for the calibration and two for
the validation to identify excipients by NIRS.

Blanco and Romero [92] has described the theoretical and
practical aspects of library construction. The procedure is
demonstrated by constructing a library including NIR spectra
of 125 different raw materials using the correlation coefficient
as classification method.
Calibration transfer and model update

After model development, calibration needs to be main-
tained. Possible new variability sources have to be included
in the model. That is why models are regularly updated and the
calibration quality checked. The effect of model updating [93]
on the identification of a pharmaceutical excipients based on
its NIR spectra has been investigated. An updating approach
consisting in adding newly available samples to the training
set and rebuilding the classification model was applied.

Calibration is time consuming. Thus the same model is
often applied on several spectrometers in order to save time.
Ulmschneider et al. [61] have successfully built transferable
cluster calibrations for the identification of different solid
excipients with near infrared spectroscopy. A review dis-
cusses some of the causes of the non-transferability of NIR
spectra for the identification of pharmaceutical excipients
[94]. Calibration transfer method will be described in the on-
line part of the review. However, we can mention that the
qualitative calibration transfer appears to be easier than the
quantitative calibration transfer.
Pharmaceutical validation

A practical experience with the EMEA Guidance on the use
of near infrared spectroscopy by the pharmaceutical industry
has been published [95]. The practicability of this guidance
for the identity test of starting materials in a generic manu-

facturing site was explored.

Without chemometrics NIRS would not be an analytical
method. It is important when a NIR device is purchased to
check the chemometric tools included in the software pack-

M

T
v
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age and it is necessary to evaluate the potential of the new
chemometric methods for the pharmaceutical application.
The software must also be CFR 21 part 11 compliant to be
implemented in a GMP environment.

. Quantitative analyses by near infrared spectroscopy

Once the classification of samples has been achieved it can be
seful to know more precisely in what extend samples are differ-
nt. Therefore, the development of quantitative model appears
ecessary. Historically the first quantitative determinations were
erformed on the moisture of samples, thanks to the two strong
ater bands absorbing at 1450 and 1940 nm [2]. The quantitative
art of this review will be subdivided into three parts. A first one
eals with the regression methods, i.e., the chemometric tools
sed to construct the model, then a second part will present a
eview of the application in the pharmaceutical environment and
final part will expose the practical aspect to construct a quan-

itative analysis by NIRS, i.e., the selection of the samples and
f the statistical indicators.

.1. Regression methods

First of all the Beer-Lambert law is of course the easiest way
f constructing a regression line. This law is considered as well
nown and due to its difficulty to apply it to NIR spectroscopy
t will not be discussed here.

.1.1. Multi-linear regression
The Multi-linear regression (MLR) [16] is the oldest of the

resented methods and is less and less used in applications due to
he improvement of computation power. This regression allows
stablishing a link between a reduced number of wavelengths
or wavenumber) and a property of the samples. The prediction
j of the search property can then be described with the formula:

j = b0 +
k∑

i=1

bixi + ei,j

here bi is the computed coefficient, xi the absorbances at each
onsidered wavelength and ei,j is the error.

Each wavelength is studied one after the other and correlated
ith the studied property. The selection is based on the predic-

ive ability of the wavelength. The three modes of selection are:
orward, backward, and stepwise. When the correlation reaches
value fixed by the operator it is kept as a part of the model

alibration wavelengths. The model is then computed between
his set of calibration wavelengths and the reference values of
he studied property.

.1.2. Principal component regression
The principal component regression (PCR) is divided into

wo steps. First the spectral data are treated with a PCA. Then a

LR is performed on the scores as predictive variables [96].
The prediction equation is written Ysampling = Tsamplingb with
is the new dimensional coordinates, Ysampling the reference

alues and b is the coefficient vector.
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There are several advantages in the use of this method. The
CA suppresses the spectral colinearity. Meanwhile there is no
uarantee that the computed principal components are correlated
o the studied property.

.1.3. Partial least squares regression
In PLS [97] method the regressions are computed with least

quares algorithms. The goal of the PLS is to establish a linear
ink between two matrices, the spectral data X and the reference
alues Y. This technique is modelling both X and Y in order
o find out the variables in X matrix that will best describe the

matrix. This can be explained by the representation of the
pectra in the space of wavelengths in order to show directions
hat will be linear combinations of wavelengths called factors
hich describe best the studied property.
PLS had enhancements during the years: for examples they

ecame O-PLS [98] when combined with OSC corrections
99,100]. Another enhancement is the moving window PLS
101].

PLS has the PCR advantages without the drawbacks thanks to
he latent variable selection according to the covariance matrix
etween the data and the investigated parameter.

.1.4. Artificial neural networks
ANN are made of several layers. The first one, called the

nputs, is the entry variables which are absorbances at specific
avelengths. The outputs which are in our case a content value

lso represent a layer of artificial neurons. The so called “hidden
ayers” represent the modelling process. They allow getting the
utput values from the first layer of neurons. To compute this,
idden layers need to be trained by back-propagation, i.e., com-
uting the transfer functions from the output to the entries to
chieve the necessary prediction skills of the network. Once the
eural network has been trained it is used on the entry variables
o get the predictions.

The use of ANN requires the optimization of a lot of param-
ters such as the number of hidden neurons or the number
f iteration to train the network, and of course the selection
f the data pretreatment and the selection of the wavelengths
102,103].

This calibration method is used by Plumb et al. to determine
he effect of experiment design on the modelling of tablet coating
104] and in 2005 he has compared several training algorithms to
redict dissolution rate [105]. The major advantage of the ANN
s their ability to construct models around non-linear relationship
etween the measured data and the predicted properties.

.1.5. Support vector machines
As classical least squares methods the SVM or support vector

egression (SVR) finds a linear relation between the regressors
nd the dependant variables [106]. The cost parameter to deter-
ine the best model is different from the one used in the former

egression methods, that is why SVR can be applied to non-

inear phenomena [107,108]. These two new techniques have
een compared in the study of Thissen et al. [106]. Blanco et al.
ave compared several of these regression method (mainly PLS
nd ANN) in an article [109]. As for the qualitative application,

t
S
d
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he selection of a quantitative method is dependant of the study
nd no general rules for the selection of method can be provided.

This part as well as the previous one showed that the use
f chemometrics is a solution for performing either qualitative
ither quantitative analyses. Chemometrics are anyway a dan-
erous tool and one should always bear in mind what he is doing,
hat he is searching for. It is a tool that has to be used with par-

imony, a recent issue of Trends in Analytical Chemistry [110]
ives a good view of “use and abuse of chemometrics”.

.2. Pharmaceutical applications

.2.1. Physical parameters
NIR spectra contain information about the chemistry and the

hysical properties of samples. Consequently, various pharma-
eutical parameters can be quantitatively analyzed by NIRS such
s hardness, particle size, compaction force, and dissolution rate
111].

NIRS is now used in a pharmaceutical environment to deter-
ine a large panel of physical parameters on powders as well as

n tablets. Hardness of tablets is determined in different stud-
es with the well established regression methods (PLS, MLR).

orisseau and Rhodes used MLR and PLS to predict the hard-
ess of tablets. The accuracy of the results are highly dependent
n the products and their formulations [112]. PCR and the slope
f the best-fit line, thereby the spectrum is reduced to a slope and
n intercept, are described in a study published in 1999 [113].
tandard error of prediction (SEP) of 0.477 and 0.539% are
chieved on two different models computed by artificial neural
etwork in a study on drug content and tablet hardness by Chen
103]. The correlation of compression force and NIR spectra at
specific wavelength is shown by Guo et al. [114]. Blanco and
lcala have more recently shown the possibility to predict the
ressure of compaction on a laboratory sample by using a PLS
odel [115].
The use of different regression methods (linear, quadratic,

ubic and PLS) allows following the percentage of the drug
eleased in the medium by a tablet. The dissolution profile is
etermined by NIRS on six different times between 15 and
20 min [116].

Berntsson has produced results on the determination of
ffective sample size when analysing powder blends with NIR
eflectance spectroscopy, showing that on powder the analyzed
epth is not further than 0.75 mm and depends of particle size
117,118]. Otsuka published in 2004 results on the scattering
ffect due to particle size measured by using a PCR model [119].

.2.2. Polymorphs determination
The polymorphic form of a product is a key parameter of this

roduct as it can modify the dissolution properties of the final
rug. But it also allows the detection of possible counterfeits,
herefore insuring the correct polymorphic form of a proprietary
roduct appears necessary.
The determinations of ratio between amorphous and crys-
alline forms of products are usually done by X-ray diffraction.
everal studies showed that this measurement can also be
one by NIR spectroscopy and that the limit of detection of
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morphous forms in crystalline form is lower by X-ray than
y NIR [120–122]. Bay observed great agreement between
IRS and X-ray on determination of glycine crystallinity. The

tandard error of prediction (SEP) of NIRS is 3.2% and it
etects crystallized glycine at a lower rate than X-ray diffraction
123]. The NIRS combined with different regression methods is
sed in several polymorphism or crystallization applications on
umerous products for example by Berntsson, Févotte, or Patel
72,74,124–127]. The NIRS can also be used as described by
avolainen et al. for evaluation of the differences in the amor-
hous state of indomethacin depending on the starting crystalline
orm and the preparation process [128].

.2.3. Moisture determination
The moisture determination is one of the very first applica-

ions of NIRS in the pharmaceutical environment. Water is a
ritical parameter that has to be ensured in a lot of pharma-
euticals because it is a key compound for the stability of the
roduct. The study of this compound is mainly due to the impor-
ance of the water signal in the NIR spectral range thanks to two
ifferent bands centered at 1450 nm and around 1940 nm. NIR
pectroscopy is used to determine the water content in powders
r granulates [129–131], tablets or capsules [132,133], as well as
n lyophilised vials or in solutions [134]. As it is being developed
or a long time now, most of the relevant applications of NIRS
n moisture determination are on-line, and will be described in
he corresponding part of the review.

.2.4. Content determination
A lot of studies have been published during the last few years

oncerning determination of chemical compound content such
s API, excipients or moisture in pharmaceuticals. Meanwhile
any of the studies are shortly presented here.
Samples can be of various types, e.g., be powders, granulates,

ablets, liquids, gels, films or lyophilised vials. One original
tudy has shown the determination of ethanol, propylene glycol
nd water directly through amber plastic bottles [134].

NIR spectroscopy is used for the quantitative determination
f active, excipients, moisture or coating thickness (Table 1).

A study compares NIR spectrometers, FT-NIR, FTIR-
AS (Fourier Transform Infrared-Photoacoustic Spectroscopy),
TIR-ATR (Fourier Transform Infrared Attenuated Total
eflectance), Diffuse Reflectance Infrared Fourier Transform
pectroscopy and FT-Raman applied for the determination of
itamin C in powders and solutions [135].

Few studies are comparing the transmittance and reflectance
echnology in NIR spectroscopy for quantitative determinations
136–139].

A more recent study of Chalus et al. compares different data
retreatments and regressions to compute models for prediction
f active in low-dosage tablets [140], another study compares
ifferent NIR spectrometers for the determination of active con-
ent in tablets [141].
More and more studies are published on the use of NIR spec-
roscopy to follow the process of production of tablets, from the
aw materials to the end product, either coated or not and even
n packaged tablets [81,142,143].

i
h
i
w
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Feng and Hu have shown in a recent study that building a
ingle universal calibration for determination of API in different
anufacturers’ tablets was achievable. The study showed the

esults on two different active ingredients [169].
As shown by the table the quantitative applications are numer-

us. Today a new field of pharmaceutical application emerges:
he products obtained via biotechnology also represent a domain
f expansion for NIRS.

.2.5. Lyophilisation
Lyophilisation is a widely used method for the formulation

f a wide range of pharmaceutical products particularly suscep-
ible to degradation in aqueous solutions like peptides, proteins
r complex organic molecules. The aim of lyophilisation is
o produce substances with good shelf stability and which are
nchanged after reconstitution with water. The first NIRS appli-
ation depicted for lyophilised products was the determination of
esidual moisture content through intact glass vials [170–173].
he advantage of this technique in comparison to the traditional
ethods like Karl Fischer titration (KF), thermogravimetry (TG)

r gas chromatography (GC) is that it is rapid, non-invasive and
on-destructive. It avoids opening the vials and risking a contam-
nation from the atmospheric moisture which can result in error
n the determination of residual water content. NIR represents
hus an alternative approach for the quality control of lyophilised
harmaceuticals. Nevertheless classical methods such as KF are
equired as reference methods for setting up the different NIR
alibrations.

First Kamat and DeLuca [171] have described the suitabil-
ty of NIR for the determination of residual moisture content
n lyophilised sucrose. Last and Prebble [170] have made an
ssessment of the applicability of the moisture calibration for the
umidity prediction in a product containing different amounts of
ctive ingredient. Jones et al. [172] have done it for the transfer-
bility of this kind of calibrations between instruments and sites.
avage et al. [173] have compared two techniques to determine
oisture content during dry-heat viral inactivation; the gravi-
etric method Loss on Drying (LOD) and the KF titration versus
IRS.
Recently Lin and Hsu [174] have examined the application

f NIR not only for the determination of the residual moisture
ontent, but they additionally have investigated how changes
n product configuration like cake porosity, cake dimensions
nd excipient-to-protein-ratio could affect the accuracy of NIRS
esidual moisture content prediction.

A lot of methods focus normally on the total amount of resid-
al moisture, but in a recent study Cao et al. [175] furthermore
ave found out that by means of NIRS it is also possible to
ifferentiate and quantify water of different energetic states. In
his work quantitative methods, based on curve fitting analysis
nd PLS regression models have been developed to quantify
oth hydrate and surface water content in lyophilised mannitol.
nowledge about hydrate water in lyophilised pharmaceuticals
s very important; as it is released during the storage it can
ave a significant impact on the stability of the formulation. The
nformation about the combination of both surface and hydrate
ater is also required. As shown by Cao the hydrate peaks in the
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Table 1
Quantitative determination by NIRS

Analyte Sample form Regression
method

Remarks Ref.

Oxytetracycline Oxytetracycline base PLS, PCR The PLS is preferred to PCR for the calibration of assay. The assay
is ranging from 91.95 to 94.43%. The SEP is 0.285%

[103]

St. John’s wort Plant PLS Hyperforin and biapigenin are calibrated in this study. Dry extract
of St. John’s wort are measured in reflectance. For the hyperforin
calibration the RMSEP is 0.22% for a content range of 1.0–6.0%
and for biapigenin the RMSEP is 0.024% for a content range of
0.20–0.55%

[144]

Ketoprofen Translucent gel MLR, PLS MLR is preferred to PLS because of its simplicity and because it
gives a good clue on the ability of NIR to predict content for these
formulations

[145]

Nystatin
metronidazole

Cream PLS The two different ingredients of the cream are determined by means
of PLS models. The measurements are made through the bottom of
the vials. Both models have a correlation coefficient greater than
0.998

[146]

Testosterone Thin films PCR Two layers mucoadhesive thin film composites disks for release of
testosterone are measure by NIRS. The reached SEP is 0.17 mg for
a content ranging from 0 to 4 mg

[147]

Selamectin moisture Topical formulation PLS Two models have been computed. One for the simultaneous
determination of selamectin and moisture and one specially
designed for the determination of moisture

[148]

Citral Lemon grass, lemon
oils

MLR The citral content in lemongrass and lemon oils are ranging
between 70 and 77% and between 2 and 16%, respectively. The
SEP obtained for MLR calibration are 0.48% and 0.12% in
lemongrass and lemon oils

[149]

Cineol Eucalyptus oil MLR The eucalyptol content is ranging from 75 to 85% (w/w). The best
MLR calibration reached a mean accuracy of 0.86% on the
validation set

[150]

Potency lipids Monensin
fermentation broth

MLR NIRS appears to be more precise than the laboratory reference
method for both products. Nevertheless the study is limited by a
lack of stability

[151]

Amilose Starch Peak ratio The amylose was ranging from 2 to 95%. The computed model
presents a RMSEP of 1.2%

[152]

Clotrimazole Extruded film PLS The drug content is ranging from 0 to 20% in a hot melt extruded
film of polyethylene oxide. (RMSECV = 0.298)

[153]

Water Lyophilised samples PLS Two PLS models are built to follow the drying process. The first
one is built for water content between 1 and 40% (w/w) with a SEP
of 1.85% while the second one is constructed on samples ranging
from 1 to 10% (w/w) water with a SEP of 0.42%

[154]

Kavapyrones Kavain
water

Extracts of piper
methysticum forst

PLS For all the calibration the SEPs are lower than 0.094% [155]

Coating thickness Tablets PLS The measurements are made directly in a fluidized bed. The
thickness of the coating is followed with a correlation coefficient of
0.97 and a RMSEC of 2.2 �m for a thickness varying between 0
and 50 �m

[156]

Coating thickness Tablets PLS The tablets are composed of two halves of different chemical
composition. Models are computed for each half and for both. In
the first case performing a PCA is necessary to determine which
half have been measured

[157]

Metformin Tablets PLS Linear
regression at 1 λ

PLS appeared to be more accurate than single wavelength
regression. The standard error is ±1.56%

[158]

Caffeine Tablets PLS The range of caffeine content is 0–100% (m/m) to construct the
calibration for analysing tablet of nominal content 58.82% (m/m).
The SEP on linearity validation is 1.37% (m/m)

[159]

Steroid Tablets PLS The tablets cover a range from 2.94 to 17.64% (m/m) of active. The
tablets are measured in transmittance, the SEP allowed the use of
NIRS for the assay of tablets for batch release

[160]

Gemfibrozil Tablets PLS Tablet of two related pharmaceutical preparations are first identified
by a classification model and then predicted with a sole calibration.
This calibration allows SEPs of 1.3–1.6% for the cores and coated
tablets of the formulation with 751 mg/g of active and SEPs of
0.7–1.2% for the cores and coated tablets of the formulation with a
content of 810 mg/g

[161]
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Table 1 (Continued )

Analyte Sample form Regression
method

Remarks Ref.

Ibuprofen 800 mg Thick tablets
(1150 mg)

PLS The tablets of 7.6 mm thickness have to be re-pressed to be reduced
to 3.6 mm thick. The measurement in transmittance is thus usable
on an especially dedicated device. The drug content ranged from
752 to 848 mg

[162]

Paracetamol Tablets MLR, PLS Two wavelength selection modes were tried for the MLR. The
computed models present SEP between 0.6 and 1.0% depending on
the pretreatment. The PLSR model reached SEP of 0.6 for most of
the pretreatment

[163]

Paracetamol Tablets MLR The MLR model is computed on two wavelengths. The SEP for this
model is 0.71% (m/m)

[164]

Acetylsalicylic acid Effervescent tablets PLS This study assays acetylsalicylic acid in three different
formulations were it can be either the only active or combined with
vitamin C or with vitamin C and paracetamol. The measurements
are performed in reflectance and in transmittance on intact tablets
and in reflectance on milled tablets

[137]

Paracetamol
amantadine
hydrochloride

Tablets powder ANN The assays of paracetamol and amantadine hydroxide are
simultaneously determined by an ANN model. Models have been
built with different pretreatments and on tablets as on powders

[102]

Paracetamol
diphenhydramine
hydrochloride
caffeine

Powder ANN, PLS The study compares different pretreatments and PLS to ANN.
ANN improves the results compared to classical PLS

[165]

Ferrous lactate
dihydrate

Granulate-Powder PLS The concentration range was 650–850 mg/g. Identification is first
performed on the samples. The laboratory samples are powders
while production ones are granulates. Both types are included in
the calibration. The reached SEP is 3.8%

[166]

Diphenhydramine Tablet transmittance
powder reflectance

PLS Tablets of diphenhydramine are measured in reflectance and in
transmittance. Their milled form is measured in reflectance. Results
are comparable for the three kind of measurements even if results in
reflectance on intact tablets are lower

[167]

Dexeketoprofen Hydrogel PLS The concentration range was first from 9 to 15 mg/g, then placebos
are added to the model. The relative error for prediction is 1.6%

[168]

Mirtazapine Powder tablet PLS The PLS model for determination content is based on laboratory
powder samples and production tablets. The first factors of the
model had to be excluded as they were explaining the physical
d
fa

[115]
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pectra decreased with the time, demonstrating that the hydrate
orm of mannitol is unstable, and as a result of the dehydration
ubsequently the surface water increased in the lyophilised cake.

Regarding the stability aspect of lyophilisates, studies of
IRS applicability have been carried out by Stockvold et al.

176]. A clear relationship between moisture, storage tempera-
ure and time has been found. Moisture content in freeze-dried
roduct increased with storage time and temperature due to
he water released from the stoppers. Derksen et al. [177] have
ound, based on the relation between the residual moisture con-
ent and the content of the active ingredient, combined with the
rrhenius relationship between degradation rate constant and

emperature, that it was possible to predict the moisture content
pecification for product shelf life.

The suitability of NIR as alternative to X-ray powder
iffractometry (XRD), differential scanning calorimetry (DSC),

reeze-drying microscopy, nuclear magnetic resonance (NMR),
ourier transform infrared (FT-IR) and Raman spectroscopies

o determine the degree of crystallinity of pharmaceuticals has
een proven by Bai et al. [123]. The mentioned methods used in

�
d
i
v

ifferences of the samples. The final selected model used four PLS
ctors

he routine present significant drawbacks, such as sample size,
ample preparation and measurement times. The authors have
emonstrated that NIRS compared to the reference method XRD
s well suited for quantify glycine crystallinity in lyophilised
akes. For providing structural support to the final lyophilised
roduct, glycine is desired to be in a highly crystalline state.

NIRS has also been found to be a good tool for evaluat-
ng protein structure. It presents several advantages in relation
o other standard tools for characterization of lyophilised pro-
ein formulation as, e.g., FT-IR. As no sample preparation is
equired, the possible vapor absorption or structural changes in
he protein due to the KBr pellet preparation can be avoided.
ai et al. [178] have shown for proteins in the solid-state that
oth drying-induced damage and thermally induced denaturing
an be detected by means of NIRS. It has also been possible
o assign well defined absorption bands in the NIR spectrum to

-helix and �-sheet. Proteins can be distinguished based on well
efined bands in the NIR spectrum. Izutsu et al. [179] also have
nvestigated the secondary structure of seven different proteins in
arious physical states. The NIR spectra of the proteins in aque-
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us solutions and in freeze-dried solids have shown that NIR
ot only enables the detection of structural differences between
roteins with identical amino acid compositions but also the
etection of higher-order structure of the proteins.

In another study Izutsu et al. [180] have elucidated the effect
f counter ions on the physical properties of l-arginine in various
hysical states by using NIR. While some acids and salts raised
he glass transition temperature (T’g) of the l-arginine, which
s desirable to avoid cake collapse during the drying process
nd to guaranty a good stability of the amorphous solid after
rying, others had little effect or lowered it. The NIR spectra
nalyzed have revealed the presence of interactions around the
-arginine amino or guanidyl groups with counter ions and in
ddition have proven that NIRS is also a useful technique for
he detection of changes in the physicochemical properties of
morphous freeze-dried solids.

In summary all these applications have shown that NIRS has
big potential for the quality control in development and pro-
uction of freeze-dried products [181,182]. Not only due to the
pecific information taken out of each application but also due to
he additional physicochemical information carried out with the
pectra. A new dimension on the application of NIR to freeze-
ried products has been provided by Brülls et al. [183]. A real
ime in situ monitoring of the lyophilisation process has been
erformed using a NIR probe and a fine wire thermocouple both
laced in the center of a 10 ml vial, 1 mm above the bottom.
he real time monitoring has provided important new informa-

ion about physical changes during the lyophilisation process,
uch as freezing (the start of ice formation, completeness of ice
ormation) and sublimation (transition from frozen solution to
aterial free from ice) in agreement with the data from the ther-
ocouple. But also information which was not possible to detect
ith classical [173] process monitoring techniques such as the

ate of desorption and the end point of the drying process has
een provided.

.2.6. Biotechnology
Biotechnology products are raising more and more in the

harmaceutical industry. Therefore, analytical methods have to
dapt to these new features. The NIRS is one of the most flexible
echnologies and this is why a lot of studies are considering the
nalysis of bioprocesses and their productivity. In 2000, Arnold
t al. tried to monitor at-line the fermentation of Streptomyces
radiae to produce antibiotic tylosin. This process involves the
se of two carbon sources (glucose and methyl oleate), gluta-
ate, and ammonium as nitrogen sources. Spectra were acquired

n the transmittance mode. Models were built for this four ana-
ytes using PLS and the second derivatives spectra. Then models
ave been validated and provide accurate results [184]. In the
ame type of fermentation, Vaidyanathan et al. have compared
he models developed using two measurement modes: diffuse
eflectance and diffuse transmittance. Both measurement modes
ave been employed in the bioprocess. Models were devel-

ped by PLS for oil and tylosin. Normally, diffuse reflectance
eometry offers less information than transmittance measure-
ents. The spectral information in reflectance mode appeared

estricted. This is important for further on-line application [185].

s
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s
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n another article Vaidyanathan et al. have investigated a bio-
rocess of Penicillium chrysogenum which produces penicillin
. NIR spectra were acquired at-line in transmittance mode

or biomass, total sugars, ammonium, penicillin and extracel-
ular protein. Models were computed with a PLS and assessed
ith SEP. Despite the filamentous nature of the biomass, mul-

ivariate models could be developed [186]. The robustness of
odels was then validated by challenging them with analyte

nd matrix variations. Models are affected by changes in the
atrix or analyte concentration. The use of an external valida-

ion set facilitated the identification of the relevant models [187].
razier et al. have characterized the effective diffusivity of glu-

amine in immobilized cell materials. Glutamine was selected
s a critical metabolite for animal cell cultivations. Spectra were
cquired in transmittance for each of the 10 positions of pure
garose solutions in the chamber. This was repeated with 11
el samples. PLS-model was computed and evaluated with SEP.
iffusivity was calculated for the entire gel [188]. The chemical

nvironment of mammalian cell cultures must be controlled to
aximize productivity. Rhiel et al. used human prostate cancer

ells. Glucose and glutamine are consumed whereas lactate and
mmonia are produced in a serum-based medium. Spectra were
ollected in transmittance. Models were built for analytes with
PLS. These results are to be introduced for on-line monitoring

189]. In a fibroblast culture, determination of glucose, lactic
cid and ammonia were considered. Spectra were measured for
queous mixtures and media samples. PLS regression allowed
onstructing accurate models [190]. Such works enhance the
t-line application of NIRS and encourage further on-line appli-
ation.

.2.7. Other pharmaceutical applications
Some quantitative studies are not directly on the pharmaceu-

ical product nevertheless they can be linked to pharmaceutical
ndustry. Laasonen has shown the possibility to determine the
hickness of the plastic packaging of pharmaceuticals. The SEP
or this determination was only 4.3 �m [191]. Such works
nhance the at-line application of NIRS and encourage further
n-line application.

.3. Practical aspect: sample selection for calibration and
alidation sets

NIR spectroscopy cannot be considered as a primary method.
herefore, to develop a quantitative model it is necessary to have
reference method to evaluate the property of samples which
ill be used in the computation. These wet chemical methods
ive what is called the reference values for the samples. These
alues will be used to compute the model.

The aim of computing quantitative models is predicting a
roperty of unknown samples with their near infrared spectra. A
odel is built and validated by using several sample sets. A first

ne is the calibration set used to compute the model. A second

ample set is the validation set used to evaluate the ability of the
odel to predict unknown samples (Fig. 1). The calibration and

he validation set have to be independent, they must consist of
amples from different batches.
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Fig. 1. Scheme for the construction of a quantitative model.

Once the model has been constructed and validated it can be
un as routine. It can be run on the device which was used during
he development step or on another device. In this case one has
o ensure the transferability of the model from one device to
nother one. Most of the time adjustments are necessary. The
mplementation of laboratory work to on-line is one of the main
ssues where transferability has to be faced. Calibration transfer

ethods and issues will be developed in the last part of this
aper.

Before computing quantitative models, one has to think of
hat will be the aim of the calibration and what will be its min-

mal accuracy and limits of validity. Therefore, it is necessary
o design an adequate range of samples comprising enough side
ariations to allow the future model to be robust [192–194]. The
ost common repartition will be that two third of the samples

re used in the calibration set and one third is used as the internal
alidation set. Some studies on sample selection are comparing
he use Kennard-stone, successive projections algorithm, ran-
om sampling and full cross-validation on modelling with MLR
nd PLS [195,196]. Wu et al. made a study on the influence of
ample selection in the sets on neural networks models [197].
he full cross-validation, the leave on out method, can also be
sed for intern validation meanwhile this method is preferred
hen the number of samples is reduced.
Goodness of fit of a prediction model can be evaluated accord-

ng to the following criteria: low Standard Error of Calibration
SEC), low SEP, high correlation coefficient (R2), and low bias.
EC, SECV (standard error of cross-validation), SEP, bias,
lope, and SEP(C) (SEP with bias correction) are criteria to
valuate the accuracy of the model. The formulae and statistical
trategy are described by Naes et al. [198].

. On-line control by means of near infrared
pectroscopy

.1. Pharmaceutical applications

.1.1. Powder blending
The blending of API with excipients is a critical step in the

anufacturing of pharmaceutical solid dosage forms. Without a

omogenous blend it is impossible to get uniform doses with the
ight content of API later in the production process. However,
he determination of blend homogeneity is problematic. Mostly
t the moment, samples are removed from the blender bin by

4

i
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sing a sample thief and then analyzed by conventional chem-
cal methods, such as HPLC or UV–vis-spectroscopy. Apart
rom the fact that only the distribution of API is determined and
he homogenous distribution of the excipients is assumed if the
PI is homogenously distributed, the sampling by a thief often

hanges the distribution of the powders and is thus associated
ith significant sampling errors. Moreover, the classical chem-

cal methods are destructive, time and cost consuming—they
re labour intensive, need solvents and are responsible for long
ycle times as they are performed off-line. Therefore, the use of
fast, non-destructive method to determine blend homogene-

ty is favourable. NIRS offers those advantages, furthermore it
bserves all contents of the powder mixture, not only the API.
s it is fast enough for real time analysis and non-invasive, an
n-line or in-line application is possible, not only for determi-
ation of homogeneity but also for end point determination. A
ot of studies have been carried out to explore the use of NIRS
or powder blending process control. That NIRS has a great
otential in powder blend analysis in principle has been shown
y Wargo and Drennen [199–202]. Cho et al. have dealt with
he effective mass that is sampled by NIR fibre-optic reflectance
robes in blending processes and have shown that the sampled
ass meets the requirements of FDA regulations [203]. Hailey

t al. have demonstrated by using a NIRS fiber-optic reflectance
robe in either a y-cone- or a bin-blender in combination with a
raphical user interface and appropriate software that it is pos-
ible to use NIRS for in-line blend analysis [204]. Sekulic et
l. have also evaluated the use of NIRS for on-line monitor-
ng of powder blending processes by using a NIRS fibre-optic
eflectance probe and showed its feasibility with a model-free
pproach [205]. Not only NIRS but also NIR imaging has been
sed by El-Hagrasy et al. who have also demonstrated the pos-
ibility to use NIR for on-line blending control, however they
ave pointed out that multiple sampling points are necessary
or correct process control [206]. Sekulic et al. have focused
n qualitative approaches to blend evaluation in a study using
small Flobin blender and a reflectance fibre optic probe. Dif-

erent blends have been produced, monitored via NIRS and on
he resulting data different mathematical pre-processings have
een performed [207]. Skibsted et al. have presented a quali-
ative and a quantitative method. They have developed control
harts and have thus been able to monitor the homogeneity of
he blend [208]. In a more recent study they have gone further on
y showing the use of NIRS applications on a complete manu-
acturing process in order to allow real-time release of products
209]. NIRS to quantify the drug content in a blend has also been
sed by Popo et al., however they have not taken spectra of the
lend directly in the blender but have used samples they obtained
y stream-sampling [210]. Berntsson et al. have described the
uantitative in-line monitoring of powder blending in a Nauta
ixer, both at laboratory and production scale. By high speed

ampling, both average content and distribution of the mixture
ontent have been assessed [211].
.1.2. Granulation
In many cases in the manufacturing of solids, powder blend-

ng is followed by a granulation step. Granulates are often
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ecessary for later tablet compression or capsules filling, or they
re the final drug form itself. They are produced by either dry
ranulation such as roller compaction or wet granulation such
s fluid bed spray granulation or high shear mixer granulation.
central parameter is the moisture content of the granulate dur-

ng granulation as it describes the granule growth kinetics. It is
lso important for the later process as it influences the properties
f the granulate and thus, e.g., the hardening of tablets during
torage. Classical measurement methods such as infrared dry-
rs for moisture content determination need time and do not
nly slow down the manufacturing by waiting periods but are
lso too slow for process control. As NIRS responds in real
ime, the process might be monitored more efficiently, resulting
n greater process reliability and optimized product character-
stics. Rantanen et al. have used NIR-reflectance spectroscopy
or in-line moisture content determination in fluidized bed gran-
lation. They have monitored spraying and drying phases and
ave been able to determine drying end points [131,212]. The
ffects of binder and particle size on moisture determination by
IRS have also been investigated [213]. A non-linear calibra-

ion model has been developed by combination of NIRS with
ther process measurements [214]. Frake et al. have also applied
n-line NIRS to a fluidized bed granulation to control the gran-
le moisture content and changes in particle size [215]. Findlay
nd et al. have shown that by NIRS it is possible to control a flu-
dized bed granulation, they have determined not only the drying
nd point but also the time point when binder addition should be
topped [129]. Gupta et al. have investigated the use of real-time
IRS for process control of roller compaction. They have shown

he link between the best fit line through the NIR spectrum and
he strength of the compact and also determined the particle size
istribution after milling of the compacts [216]. In another study
hey have determined content uniformity, moisture content and
trength of compacts [217].

.1.3. Drying
Drying is most of the time a critical step in the manufacture

f pharmaceutical products. It is used in processes such as gran-
lation (commented in the corresponding part of the review) or
yophilisation.

The current pharmacopeias establish a series of quality
arameters for the release of lyophilised products, amongst oth-
rs the destructive and time consuming KF titration. Only a
mall spot check is required to prove the compliance of qual-
ty. This few samples are representative for the whole batch and
ecisive for the release. Even when these samples are found
o be conforming to the requirements, this does not guarantee
he fulfillment for the rest of the products not controlled. Thus,
n uncertainty of compliance is surrounding these products. A
ew trend is the use of in-line methods for a complete batch
nspection for guarantee a homogeneous quality of the product
voiding the costly loss of complete batches in the case that some
ials out of specification are found. Sukowski and Ulmschnei-

er [182] have opened a new way to accurately predict in-line
he residual moisture content in lyophilised products. In his fea-
ibility study Sukowski has proven that with applying classical
hemometrics (PCA for the identification of the product and PLS

s
d
i
M
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or the quantification) a 100% control of an entire batch at a line
peed of 300 vials per minute is possible. As already mentioned
n the lyophilisation part of this review, Brülls et al. have present
very promising way to survey qualitatively and quantitatively

he drying of samples during a lyophilisation process [183].

.1.4. Cristallinity
During the drying phase of wet granulation polymorphic

hanges can occur in the active ingredient or in some excipients.
he polymorphic changes of glycine involve important changes

n the hydrogen bonding of the crystals. These changes have
llowed Davis et al. to quantify the polymorphs of glycine with
IRS during wet granulation [218]. The crystallisation may also
e followed in an earlier step, i.e., the production of the active
ngredient. Févotte and et al. have used a fibre probe to follow
t by means of NIRS. The influence of several parameters was
tudied. This has shown the possibility of using this spectroscopy
o follow the crystallisation of the active on-line [126].

.1.5. Coating
One of the last steps of the preparation of the drug may be

he coating. It is important to ensure the integrity and the good
uality of the coating because it may, e.g., determine the release
f the drug or ensure stability. The coating can be made on
ifferent drug forms such as granulates or tablets. NIR diffuse
eflectance spectrometry with a fibre probe has been used to
etermine the thickness of film coating on pellets by means of a
LS model. The probe was inserted by a side port of the fluidized
ed reactor, and located vertically to the pellet bed [156]. In the
ase of Pérez-Ramos et al. who dealt with tablets, the probe
as placed directly in the coating pan for diffuse reflectance
easurement. An univariate model was used, which followed

he decrease of a specific band of one compound of the core and
he increase of a specific band of the coating [219].

.1.6. Packaging
The very last step in drug manufacturing is the packaging, and

ven during this last operation a final control can be performed.
IRS spectroscopy has been showed to allow permit a 100%
ackaging check of tablets. A PCA model was built to sort up to
2,000 tablets per minute according to their quality. For this the
pectra given by a NIR camera are compared to the ones used
n the model which were acquired on a Foss 6500 Spectrometer
220].

.1.7. Biotechnology
In 2002–2003 Arnold et al. explained the acquisition, the

alibration, the validation and the implementation of fermen-
ation process controlling and monitoring. It was possible to
ollect NIR spectra in transmittance or in reflectance mode. A
econd derivative must be calculated. For the calibration, the

LR, PLS or PCR that were compared to the SEC can be used.
o calibrate the model it was recommended to use a second

et of samples. For the implementation direct on-line or in-line
evelopment is advised because the transfer of at-line analysis to
n-line analysis would be a challenge [221,222]. Cimander and

andenius in 2002 applied this on a fermentation of Escherichia
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oli to produce antibiotics. Spectra were acquired from 400 to
500 nm with an immersion probe. A PCA and a PLS were
sed. Models for biomass, tryptophan, phosphate, glucose and
cetate were tested. Models for biomass and tryptophan were
alidated and applied [223]. Fermentations were used to pro-
uce toxins or plasmids by Navratil et al. in 2004 as well. They
sed Vibrio cholerae to fabricate cholera-toxin and to produce
lasmids. Spectra were acquired between 400 and 2500 nm with
fiber optic probe. A PLS was used to develop calibrations of
iomass, glucose and acetate. They were compared to a SEP.
nterference problems that occurred when applying the chosen
odels in the bioreactor are discussed and compensated. Finally

hey apply NIR prediction models in production [224]. In 2003,
amburini et al. tried to monitor the fermentation of Staphy-

ococcus and Lactobacillus. Spectra were acquired from 700 to
800 nm with a fiber optic probe. Second derivative spectra were
alculated from sample minus water difference spectra. A PLS
as applied to develop models for glucose, lactic acid, acetic

cid and biomass. Those were used for automatic control [225].
etermination of biomass, glucose, lactic acid and acetic acid
uring fermentations of Staphylococcus xylosus was performed
y Tosi and et al. in 2003. Spectra were collected from 700
o 1800 nm with a fiber optic probe. A second derivative was
alculated and then submitted to a sample selection to discrim-
nate the outliers. Models were developed by PLS for glucose,
iomass, lactic acid and acetic acid. The SEC and SEP of models
n validation were satisfactory. The model was applied to other
icroorganisms in the same medium [226]. The study of Yeung

t al. compares two strategies for the preparation of calibration
amples of a Saccharomyces cerevisiae bioprocess. Spectra were
btained between 1900 and 2500 nm. A PLS was applied on the
odel that was developed for cell debris, protein and RNA. They
ere compared to the SEP. The selected calibration models were
alidated [227].

Traditionally many fermentation products come from micro-
ial bioprocesses, however lately mammalian and insect cell
ultivations have also been exploited for the high-cost products
hey can be engineered to produce. Thus Arnold et al. develop a

onitoring of mammalian cell cultivation in 2003. Spectra were
cquired between 400 and 2500 nm with an immersion probe. A
econd derivative was calculated and a SNV (standard normal
ariate) was applied. Models were constructed for glucose, lac-
ate, glutamine and ammonia and compared to the SEC. External
nd internal (compared to SEP) validation were used [228]. The
onitoring for insect cell culture was developed by Riley et

l. in 1996. Spectra were acquired between 2000 and 2500 nm.
alibration models were established for glutamine and glucose
ith a PLS and compared to the SEC and SEP. Models are used
ut only for high concentrations [229]. Studies of cell culture
edia were made by Jung et al. and Lewis et al. in 2002 and

000. They measured their spectra between 2000 and 2500 nm
ith a fiber optic probe. In the first study, the system was cou-
led at a lab-system to provide a real-time spectral background

eference. A smoothing and a PLS was applied to develop the
alibration model of glucose and lactate. Models were compared
o SEC, SEP and mean percent error (MPE) [230]. In the sec-
nd study, they developed models with MSC and without MSC

a
P
T
i
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raw spectra) to predict glucose using PLS. Results were com-
ared to SEC, SEP and MPE and the better model to control
he cell culture was used [231]. Results prove the ability of NIR
pectroscopy to monitor on-line fermentations and cell cultures.

.2. Calibration transfer issues

The calibration development is time consuming and expen-
ive due to the reference analyses. Therefore, a new calibration
annot be reproduced for each new spectrometer.

The calibration transfer aim is to apply a unique model on sev-
ral spectrometers with equivalent prediction errors. The model
s developed on a first spectrometer called “master” instrument
nd is used on several other spectrometers, i.e., “slave” devices.
owever, even instruments produced by one manufacturer do
ot produce exactly the same spectra. Without calibration trans-
er, the slave instrument standard error of prediction will be
igher than the one of the master system [17].

Thus solutions to transfer the calibration between devices
ave to be found. Reviews concerning the calibration transfer
ethods was written by Fearn [232] and by Feudaleet al. [233].
hree different approaches are available to solve the calibration

ransfer problem:
The first method is the construction of a robust model which

ives us an accurate prediction on several instruments. The
alibrations are developed with spectra acquired on several spec-
rometers. The idea is to include all the variation sources in the
alibration. Spectral pretreatment is also useful to reduce the
ifferences between instruments and to build a robust model.

The second one is based on the predicted value correc-
ion. A bias or/and a slope between the predicted values of
he master and the slave spectrometers is computed. A F-test
etermines if the slope correction is really needed. Most of
he time only a bias correction is enough to correct the dif-
erences between instruments. The bias formula is as follows:
ias = ∑n

j=1(ymaster,j − yslave,j)/n with yslave are the values
redicted with the slave instrument and ymaster the values pre-
icted with the master instrument and n is the number of samples
n the calibration transfer dataset.

The equation yslave = ymaster − bias is computed with the stan-
ardization set. The bias is then applied for each new prediction.
he disadvantage is that this method corrects only the system-
tic error. Thus, the random error on the slave instrument will
e unchanged.

The third method is a spectral correction. The slave and mas-
er spectra are compared. Then a mathematical correction is
pplied on the slave spectra in order to make them similar to
he master ones and thus to use the master calibration on the
lave instruments.

The three most common methods for spectral correction are
he direct standardization (DS), the piecewise direct standard-
zation (PDS), and the Shenk and Westerhaus method (SW). DS
nd PDS methods perform PLS regressions between the slave

nd the master spectra. DS works with the full spectra whereas
DS performs PLS regressions on moving spectral windows.
he SW method [234,235] proceeds in two steps: the first one

s a wavelength adjustment between master and slave and the
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econd one is an absorbance correction with a linear regression
or each wavelength. Several other chemometrics methods can
e applied: Target Factor Analysis [236], neural networks [237],
avelets [238], Orthogonal Signal Correction [239]. However,

hese methods are less applied.
Several samples can be used to perform a spectral correction:

table standard (such as rare earth oxides), pure chemical prod-
cts or pharmaceutical product subsets. The standards should
e stable and representative. It was shown that the calibration
ransfer is more accurate when the calibration samples and the
ransfer samples have similar spectra.

Concerning the practical aspect, we have to mention that
he calibration transfer procedure has to be validated with an
xternal dataset. Several studies compared the transfer methods
or pharmaceutical applications [240–242]. However, no gen-
ral rules can be proposed and the calibration transfer solution
epends on the application and the devices.

. Conclusion

The potential power of NIRS in quality control and process
nalytics needs no further demonstration. NIRS is a powerful
ay to discriminate pharmaceutical compounds. This method

an be used qualitatively to detect, to identify, and to qualify raw
aterials and to control final products. NIRS is a suitable method

or classification but also for quantification of pharmaceutics. It
s a useful tool for quality control and on-line applications. Near
nfrared spectroscopy is a potentially precious diagnostic tool
n process trouble-shooting and can provide a fingerprinting of
harmaceutical products.

The success of this analytical technique relies on ground
dvantages [60]. As seen before, NIRS involves the chemical
nd the physical properties of the samples. This spectroscopy
equires no or reduced sample preparation and is non-
estructive. Moreover the measurement is fast, e.g., it can be
erformed in less than a second for on-line applications. NIR
requencies go through glass.

Finally, within the last years NIR imaging systems were
eveloped. A hyper-spectral imaging spectrometer records
imultaneously spectral and spatial information of samples. NIR
maging [243] complements NIR spectroscopy and is used when
patial distribution is an important issue of the analysis. This
ethod will be an useful tool in the future.
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